INFLUENCE OF SUBSTITUENTS ON REGIOSELECTIVITY OF VINYLLITHIUM FORMATION WITH ACRYLIC ACID DERIVATIVES¹⁾

Richard R. Schmidt^{*}and Heike Speer Fakultat Chemie, Universitat Konstanz Postfach 5560, D-7750 Konstanz, Germany

Abstract: *12-AIkoxy, &diaIkylomino, and l3-N-aZkyZacylamino substituents deternine the regiose-Lectivity of the vinylic deprotonation of acrylic ester and nitrile derivatives: either* α *- or BvinyZZithium species may be generated. The corresponding acrylamides or systems with additiona* a-alkyl or a-methylmercapto substituents are lithiated at *B*-position.

Direct lithiation of β -aminoacrylonitrile $\underline{1a}$ led to preferential kinetic β -metalation and to thermodynamic α -metalation $2,3$) (table 1); either α - or β -substituted products were obtained with different electrophiles. These results were discussed in terms of inductive (I) and mesomeric (M) effects and different intramolecular complexation and solvation $^{\rm 3)}$. Surprisingly, with ßethoxyacrylonitrile 2a only a-lithiation was observed under similar reaction conditions (table 1), even though the C_gH -acidity should be relatively higher because of the stronger -I- effect of the ethoxy group. Two factors may be responsible for this result: (i) The increase of the $C_{\rho}H$ acidity by the -I- effect of the B-ethoxy group in $2a$ is not as pronounced as the decrease of the C_{α} H-acidity by the mesomeric effect of the ß-amino group in $\underline{1a}$, thus contributing to kinetic ßdeprotonation in $\underline{\mathbf{1}}$. This argument is supported by calculations and spectroscopic evidence $^{3,4)}$. (ii) Intramolecular complexation in $1a^{-\alpha}$ contributes strongly to the thermodynamic α -deprotonation in $\frac{1}{n}$ according to theoretical calculations $\frac{3}{n}$, even though there is no conjugation between the amino group and the π -system. However, intramolecular complexation of the lithium atom by the ethoxy oxygen atom in $2a-\alpha$ is possible without loss of π -conjugation because of the geometry of the second pair of free electrons, thus favoring general α -deprotonation in $\frac{2\alpha}{\alpha}$.

$$
\sum_{\alpha} \frac{1}{\alpha} \sum_{i=1}^{n} \frac{1}{\alpha} \sum_{j=1}^{n} \frac{1}{\alpha} \frac{1}{\alpha} = \alpha \qquad \text{if} \quad \frac{1}{\alpha} \sum_{i=1}^{n} \frac{1}{\alpha} \sum_{j=1}^{n} \frac{1}{
$$

		Compound			Reaction Conditions ^a				Deuteration b	
		x	Y	$\mathbb R$	Base	Base-equ. [^O C]		$[\min]$	Yield[$\S]^\mathsf{C}$	α/β
$x + \frac{a}{b}$	$\frac{1a}{1}$	$-\widehat{N}$			LDA LDA	1.2 1.2	-113 -76	40 60	95 82	$\frac{2}{\alpha}$ d ^d
	$\frac{2a}{2}$	$-OEt$			LDA n-BuLi n-BuLi	1.5 1.5 1.5	-100 -100 - 50	2 30 2	45 71 40	α α α
	$\underline{\mathbf{1}}\underline{\mathbf{b}}$	$-N(CH_3)$ ₂	SCH ₃		n-BuLi	1.5	-110	45	48	B
$Y \underset{X \overset{\alpha}{\rightarrow} H}{\underset{\beta}{\text{N}}} H$	$\frac{2b}{2}$	$-OEt$	CH ₃		LDA	1.6	-100	$\overline{2}$	98	ß
H & COOR	$\frac{3a}{2}$	$-N$		Et	t-BuLi t -BuLi	1.4 1.4	-113 -65	15 0.5	70 90	B^d \tilde{B}^d
	$\frac{3b}{2}$	$-N$ ^{CH₃}		Me	LDA LDA LDA LDA	1.5 1.5 1.5 1.5	-120 -100 -80 -80	10 2 10 60	58 62 45 38	90/10 80/20 60/40 30/70
	$rac{3c}{1}$, CH ₃ -10 O CH ₃		Me	LDA LDA LDA	1.5 1.5 1.5	-100 -100 -80	$\overline{\mathbf{c}}$ 25 $\overline{2}$	62 64 50	α α α
	$\frac{3d}{2}$	$-N$ CH ₃ C(CH ₃) ₃		Me	LDA	1.5	-100		47	α
$\sum_{x \in \mathcal{X}} 0$	$\frac{3e}{1}$	$-N$ (CH ₃) ₂			n-BuLi	1.6	-100	15	71	ß
Y COOME $x \hat{B}$ H	$\frac{3f}{2}$	$-N(CH_3)$ ₂ $-SCH_3$		\overline{a}	LDA	1.6	-80	25	72	ß
$H \underset{X \stackrel{\alpha}{\rightarrow} H}{\underset{\beta}{\sim}}$	$\frac{4a}{1}$	$-OEt$		Et	LDA LDA	1.6 1.6	-90 -90	$\overline{\mathbf{c}}$ 300	87 95	$5/95^d$ 43/57d
	$\frac{4b}{1}$	-0. `OMe		Et	LDA LDA LDA LDA	1.6 1.6 1.6 1.6	-100 -100 -100 -70	$\overline{2}$ 10 120 10	62 65 58 41	10/90 ß ß ß
$H \propto CO-NEt_2$	$\frac{5a}{1}$	-Ń			t-BuLi	1.4	-113	30	95	β^d
	$\frac{6a}{2}$	-OMe			LDA LDA	1.6 1.6	-100 -60	3 _O 10	87 71	ß ß

Table 1: Deprotonation of β -Substituted Acrylic Acid Derivatives $\underline{1} - \underline{6}$.

a Solvent: THF; $\frac{b}{c}$ with CH₃OD; $\frac{c}{c}$ isolated yield of deuterated material; $\frac{d}{c}$ see ref. 2.

The convenient B-lithiations of $\underline{1b}$ and $\underline{2b}$ demonstrate, that direct B-metalation of these acrylonitrile derivatives is possible when a-substituents are present; deprotonation at the allylic methyl group was not observed with $2b \overline{b}$. This clearly indicates an activating effect of the cyano group at the α - and at the ß-position β . Therefore, like $\frac{1a}{\pi a}$, $\frac{2a}{\pi a}$ may possess comparable acidities at a- and R-position even though R-deprotonation was not observed.

The weaker -I- effect of the ester group compared with the cyano group $6)$ and the more favorable intramolecular complexation in $3a-6$ support the exclusive ß-lithiation of $3a$ $'$. A decrease of the + M-effect and an increase of the -I- effect of the ß-aminosubstituent change the situation completely: under kinetic control $\frac{3b}{2}$ is mainly and $\frac{3c}{2}$ and $\frac{3d}{2}$ exclusively lithiated at the α -po sition. Investigations with $\frac{3b}{2}$ at different temperatures demonstrated, that ß-deprotonation is thermodynamically favored. Because of the strong influence of intramolecular complexation on the regioselectivity of these vinylic lithiations, it is assumed, that the chelates $\underline{3b}$ -a and $\underline{3b}$ -ß contribute strongly to this behavior,

 β -Lithiation was obtained without any difficulty with the α -substituted β -aminoacrylic acid derivatives $\frac{3e}{2}$ and $\frac{3f}{2}$. Again, the allylic methylene group of $\frac{3f}{2}$ is less acidic than the vinylic C_gH -group under the applied reaction conditions.

Considering the results of $1a$, $2a$ and $3a-d$ and the inductive and mesomeric effects in the β ethoxy acrylic ester $\underline{4a}$, deprotonation of $\underline{4a}$ could lead to a result observed for $\underline{3b}$. However, the very different intramolecular stabilisations of the lithiated species $4a-x$ and $4a-8$ are in favor of $4a-a$ to be the thermodynamically more stable vinyllithium derivative. This interpretation is supported by the behavior of $4b$: the better intramolecular stabilisation of the ß-lithiated species $4b-8$ compared with the $\alpha-1$ ithiated species $4b-\alpha_1$ or $4b-\alpha_2$ results in a complete transformation of the initially formed α/β -mixture into the β -lithiated species $4b-8$.

4261

The lower inductive effect of the carboxamide group together with a better intramolecular stabilisation in the ß-lithiated species 5a-ß and 6a-ß leads to complete ß-lithiation of 5a and 6a under very different reaction conditions. The observed lower reactivity of the vinyllithium species $5a-8$, $6a-8$, $3b-a$, $4b-8$ towards electrophiles $8)$ supports the strong intramolecular complexation discussed above.

The investigations demonstrate, that ß-alkoxy and ß-amino acrylonitrile and acrylic ester derivatives may be lithiated at α - or ß-position, thus being versatile intermediates for further syntheses 8).

- 1) Vinyl Carbanions, Part 11. For part 10 see: B.A. Feit, U. Melamed, R.R. Schmidt, and H. Speer, Tetrahedron, in press.
- 2) R.R. Schmidt and J. Talbiersky, Angew.Chem. 89, 891 (1977); Angew.Chem.Int.Ed.Engl. 16, 851 (1977) .
- 3) R.R. Schmidt, J. Talbiersky, and P. Russegger, Tetrahedron Lett. 1979, 4273.
- 4) E. Arguedas Chaverri, Dissertation, University Louvain La Neuve, 1981.
- 5) J. Hartmann, M. Stähle, and M. Schlosser, Synthesis 1974, 888.
- 6) R.W. Taft, jr. J.Am.Chem.Soc. 74, 2729 (1952); R.W. Taft, in "Steric Effects in Organic Chemistry", M.S. Newman, Ed., Wiley, New York 1956, Chapter 13.
- 7) R.R. Schmidt and J. Talbiersky, Angew.Chem. 90, 220 (1978); Angew.Chem.Int.Ed.Engl. 17, 204 (1978) .
- 8) R.R. Schmidt and H. Speer, to be published; the reactivity is susceptible to the addition of complexing agents.

(Received in Germany 20 June 1981)